Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
J Ovarian Res ; 17(1): 97, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720330

RESUMO

The epidermal growth factor (EGF)-like factors, comprising amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG), play a critical role in regulating the ovulatory process. Pentraxin 3 (PTX3), an essential ovulatory protein, is necessary for maintaining extracellular matrix (ECM) stability during cumulus expansion. The aim of this study was to investigate the impact of EGF-like factors, AREG, BTC, and EREG on the expression and production of PTX3 in human granulosa-lutein (hGL) cells and the molecular mechanisms involved. Our results demonstrated that AREG, BTC, and EREG could regulate follicular function by upregulating the expression and increasing the production of PTX3 in both primary (obtained from 20 consenting patients undergoing IVF treatment) and immortalized hGL cells. The upregulation of PTX3 expression was primarily facilitated by the activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway, induced by these EGF-like factors. In addition, we found that the upregulation of PTX3 expression triggered by the EGF-like factors was completely reversed by either pretreatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, or knockdown of EGFR, suggesting that EGFR is crucial for activating the ERK1/2 signaling pathway in hGL cells. Overall, our findings indicate that AREG, BTC, and EREG may modulate human cumulus expansion during the periovulatory stage through the upregulation of PTX3.


Assuntos
Anfirregulina , Betacelulina , Proteína C-Reativa , Epirregulina , Células Lúteas , Componente Amiloide P Sérico , Regulação para Cima , Feminino , Humanos , Anfirregulina/metabolismo , Anfirregulina/genética , Betacelulina/metabolismo , Proteína C-Reativa/metabolismo , Proteína C-Reativa/genética , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Epirregulina/metabolismo , Epirregulina/genética , Receptores ErbB/metabolismo , Células Lúteas/metabolismo , Sistema de Sinalização das MAP Quinases , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética
2.
Small ; : e2402823, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712472

RESUMO

Perovskite oxides are proven as a striking platform for developing high-performance electrocatalysts. Nonetheless, a significant portion of them show CO2 electroreduction (CO2RR) inertness. Here a simple but effective strategy is reported to activate inert perovskite oxides (e.g., SrTiO3) for CO2RR through slight Cu2+ doping in B-sites. For the proof-of-concept catalysts of SrTi1-xCuxO3 (x = 0.025, 0.05, and 0.1), Cu2+ doping (even in trace amount, e.g., x = 0.025) can not only create active, stable CuO6 octahedra, increase electrochemical active surface area, and accelerate charge transfer, but also significantly regulate the electronic structure (e.g., up-shifted band center) to promote activation/adsorption of reaction intermediates. Benefiting from these merits, the stable SrTi1-xCuxO3 catalysts feature great improvements (at least an order of magnitude) in CO2RR activity and selectivity for high-order products (i.e., CH4 and C2+), compared to the SrTiO3 parent. This work provides a new avenue for the conversion of inert perovskite oxides into high-performance electrocatalysts toward CO2RR.

3.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38588573

RESUMO

SUMMARY: Recent technical advancements in single-cell chromatin accessibility sequencing (scCAS) have brought new insights to the characterization of epigenetic heterogeneity. As single-cell genomics experiments scale up to hundreds of thousands of cells, the demand for computational resources for downstream analysis grows intractably large and exceeds the capabilities of most researchers. Here, we propose EpiCarousel, a tailored Python package based on lazy loading, parallel processing, and community detection for memory- and time-efficient identification of metacells, i.e. the emergence of homogenous cells, in large-scale scCAS data. Through comprehensive experiments on five datasets of various protocols, sample sizes, dimensions, number of cell types, and degrees of cell-type imbalance, EpiCarousel outperformed baseline methods in systematic evaluation of memory usage, computational time, and multiple downstream analyses including cell type identification. Moreover, EpiCarousel executes preprocessing and downstream cell clustering on the atlas-level dataset with 707 043 cells and 1 154 611 peaks within 2 h consuming <75 GB of RAM and provides superior performance for characterizing cell heterogeneity than state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: The EpiCarousel software is well-documented and freely available at https://github.com/biox-nku/epicarousel. It can be seamlessly interoperated with extensive scCAS analysis toolkits.


Assuntos
Cromatina , Análise de Célula Única , Software , Cromatina/metabolismo , Análise de Célula Única/métodos , Humanos , Genômica/métodos , Biologia Computacional/métodos
4.
Arch Toxicol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630283

RESUMO

Cannabidiol (CBD), one of the major components extracted from the plant Cannabis sativa L., has been used as a prescription drug to treat seizures in many countries. CBD-induced male reproductive toxicity has been reported in animal models; however, the underlying mechanisms remain unclear. We previously reported that CBD induced apoptosis in primary human Leydig cells, which constitute the primary steroidogenic cell population in the testicular interstitium. In this study, we investigated the effects of CBD and its metabolites on TM3 mouse Leydig cells. CBD, at concentrations below 30 µM, reduced cell viability, induced G1 cell cycle arrest, and inhibited DNA synthesis. CBD induced apoptosis after exposure to high concentrations (≥ 50 µM) for 24 h or a low concentration (20 µM) for 6 days. 7-Hydroxy-CBD and 7-carboxy-CBD, the main CBD metabolites of CBD, exhibited the similar toxic effects as CBD. In addition, we conducted a time-course mRNA-sequencing analysis in both primary human Leydig cells and TM3 mouse Leydig cells to understand and compare the mechanisms underlying CBD-induced cytotoxicity. mRNA-sequencing analysis of CBD-treated human and mouse Leydig cells over a 5-day time-course indicated similar responses in both cell types. Mitochondria and lysosome dysfunction, oxidative stress, and autophagy were the major enriched pathways in both cell types. Taken together, these findings demonstrate comparable toxic effects and underlying mechanisms in CBD-treated mouse and primary human Leydig cells.

5.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558047

RESUMO

The action of wind and waves has a significant effect on the ship's roll, which can be a source of chaos and even capsize. The influence of random wave excitation is considered in order to investigate complex dynamic behavior by analytical and numerical methods. Chaotic rolling motions are theoretically studied in detail by means of the relevant Melnikov method with or without noise excitation. Numerical simulations are used to verify and analyze the appropriate parameter excitation and noise conditions. The results show that by changing the parameters of the excitation amplitude or the noise intensity, chaos can be induced or suppressed.

6.
Biomed Pharmacother ; 173: 116405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484559

RESUMO

BACKGROUND: Tangshen formula (TSF) has an ameliorative effect on hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD), but the role played by the gut microbiota in this process is unknown. METHOD: We conducted three batches of experiments to explore the role played by the gut microbiota: TSF administration, antibiotic treatment, and fecal microbial transplantation. NAFLD mice were induced with a high-fat diet to investigate the ameliorative effects of TSF on NAFLD features and intestinal barrier function. 16S rRNA sequencing and serum untargeted metabolomics were performed to further investigate the modulatory effects of TSF on the gut microbiota and metabolic dysregulation in the body. RESULTS: TSF ameliorated insulin resistance, hypercholesterolemia, lipid metabolism disorders, inflammation, and impairment of intestinal barrier function. 16S rRNA sequencing analysis revealed that TSF regulated the composition of the gut microbiota and increased the abundance of beneficial bacteria. Antibiotic treatment and fecal microbiota transplantation confirmed the importance of the gut microbiota in the treatment of NAFLD with TSF. Subsequently, untargeted metabolomics identified 172 differential metabolites due to the treatment of TSF. Functional predictions suggest that metabolisms of choline, glycerophospholipid, linoleic acid, alpha-linolenic acid, and arachidonic acid are the key metabolic pathways by which TSF ameliorates NAFLD and this may be influenced by the gut microbiota. CONCLUSION: TSF treats the NAFLD phenotype by remodeling the gut microbiota and improving metabolic profile, suggesting that TSF is a functional gut microbial and metabolic modulator for the treatment of NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Fígado , Dieta Hiperlipídica/efeitos adversos , Antibacterianos/farmacologia , Camundongos Endogâmicos C57BL
7.
Small ; : e2311253, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456580

RESUMO

A highly viable alternative to lithium-ion batteries for stationary electrochemical energy-storage systems is the potassium dual-ion hybrid capacitor (PIHC), especially toward fast-charging capability. However, the sluggish reaction kinetics of negative electrode materials seriously impedes their practical implementation. In this paper, a new negative electrode Bi@RPC (Nano-bismuth confined in nitrogen- and oxygen-doped carbon with rationally designed pores, evidenced by advanced characterization) is developed, leading to a remarkable electrochemical performance. PIHCs building with the active carbon YP50F positive electrode result in a high operation voltage (0.1-4 V), and remarkably well-retained energy density at a high-power density (11107 W kg-1 at 98 Wh kg-1 ). After 5000 cycles the proposed PHICs still show a superior capacity retention of 92.6%. Moreover, a reversible mechanism of "absorption-alloying" of the Bi@RPC nanocomposite is revealed by operando synchrotron X-ray diffraction and Raman spectroscopy. With the synergistic potassium ions storage mechanism arising from the presence of well-structured pores and nano-sized bismuth, the Bi@RPC electrode exhibits an astonishingly rapid kinetics and high energy density. The results demonstrate that PIHCs with Bi@RPC-based negative electrode is the promising option for simultaneously high-capacity and fast-charging energy storage devices.

8.
ACS Biomater Sci Eng ; 10(4): 2486-2497, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38445596

RESUMO

Islet or ß-cell transplantation is currently considered to be the ideal treatment for diabetes, and three-dimensional (3D) bioprinting of a bionic pancreas with physiological stiffness is considered to be promising for the encapsulation and transplantation of ß-cells. In this study, a 5%GelMA/2%AlgMA hybrid hydrogel with pancreatic physiological stiffness was constructed and used for ß-cell encapsulation, 3D bioprinting, and in vivo transplantation to evaluate glycemic control in diabetic mice. The hybrid hydrogel had good cytocompatibility and could induce insulin-producing cells (IPCs) to form pseudoislet structures and improve insulin secretion. Furthermore, we validated the importance of betacellulin (BTC) in IPCs differentiation and confirmed that IPCs self-regulation was achieved by altering the nuclear and cytoplasmic distributions of BTC expression. In vivo transplantation of diabetic mice quickly restored blood glucose levels. In the future, 3D bioprinting of ß-cells using biomimetic hydrogels will provide a promising platform for clinical islet transplantation for the treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Camundongos , Animais , Diabetes Mellitus Experimental/terapia , Hidrogéis/farmacologia , Hidrogéis/química , Controle Glicêmico , Biomimética , Células Secretoras de Insulina/metabolismo
9.
Int J Biol Macromol ; 262(Pt 2): 130092, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354920

RESUMO

Protein glutaminase (PG; EC 3.5.1.44) is a novel deamidase that helps to improve functional properties of food proteins. Currently, the highest activated PG enzyme activity was 26 U/mg when recombinantly expressed via the twin-arginine translocation (Tat) pathway in Corynebacterium glutamicum. In this study, superfolder green fluorescent protein (sfGFP) was used to replace traditional signal peptides to facilitate efficient heterologous expression and secretion of Propeptide-Protein glutaminase (PP) in Bacillus subtilis. The fusion protein, sfGFP-PP, was secreted from 12 h of fermentation and reached its highest extracellular expression at 28 h, with a secretion efficiency of about 93 %. Moreover, when fusing sfGFP with PP at the N-terminus, it significantly enhances PG expression up to 26 U/mL by approximately 2.2-fold compared to conventional signal-peptides- guided PP with 11.9 U/mL. Finally, the PG enzyme activity increased from 26 U/mL to 36.9 U/mL after promoter and RBS optimization. This strategy not only provides a new approach to increase PG production as well as extracellular secretion but also offers sfGFP as an effective N-terminal tag for increased secreted production of difficult-to-express proteins.


Assuntos
Bacillus subtilis , Glutaminase , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/química , Glutaminase/genética , Glutaminase/metabolismo , Transporte Proteico , Sinais Direcionadores de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Toxicol Lett ; 393: 84-95, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311193

RESUMO

Hydroxychloroquine (HCQ), a derivative of chloroquine (CQ), is an antimalarial and antirheumatic drug. Since there is limited data available on the genotoxicity of HCQ, in the current study, we used a battery of in vitro assays to systematically examine the genotoxicity of HCQ in human lymphoblastoid TK6 cells. We first showed that HCQ is not mutagenic in TK6 cells up to 80 µM with or without exogenous metabolic activation. Subsequently, we found that short-term (3-4 h) HCQ treatment did not cause DNA strand breakage as measured by the comet assay and the phosphorylation of histone H2A.X (γH2A.X), and did not induce chromosomal damage as determined by the micronucleus (MN) assay. However, after 24-h treatment, both CQ and HCQ induced comparable and weak DNA damage and MN formation in TK6 cells; upregulated p53 and p53-mediated DNA damage responsive genes; and triggered apoptosis and mitochondrial damage that may partially contribute to the observed MN formation. Using a benchmark dose (BMD) modeling analysis, the lower 95% confidence limit of BMD50 values (BMDL50) for MN induction in TK6 cells were about 19.7 µM for CQ and 16.3 µM for HCQ. These results provide additional information for quantitative genotoxic risk assessment of these drugs.


Assuntos
Hidroxicloroquina , Proteína Supressora de Tumor p53 , Humanos , Hidroxicloroquina/toxicidade , Hidroxicloroquina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Dano ao DNA , Cloroquina/toxicidade , Ensaio Cometa
11.
Small ; : e2309900, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38312091

RESUMO

All-hydrogel supercapacitors are emerging as promising power sources for next-generation wearable electronics due to their intrinsic mechanical flexibility, eco-friendliness, and enhanced safety. However, the insufficient interfacial adhesion between the electrode and electrolyte and the frozen hydrogel matrices at subzero temperatures largely limit the practical applications of all-hydrogel supercapacitors. Here, an all-hydrogel supercapacitor is reported with robust interfacial contact and anti-freezing property, fabricated by in situ polymerizing hydrogel electrolyte onto hydrogel electrodes. The robust interfacial adhesion is developed by the synergistic effect of a tough hydrogel matrix and topological entanglements. Meanwhile, the incorporation of zinc chloride (ZnCl2 ) in the hydrogel electrolyte prevents the freezing of water solvents and endows the all-hydrogel supercapacitor with mechanical flexibility and fatigue resistance across a wide temperature range of 20 °C to -60 °C. Such all-hydrogel supercapacitor demonstrates satisfactory low-temperature electrochemical performance, delivering a high energy density of 11 mWh cm-2 and excellent cycling stability with a capacitance retention of 90% over 10000 cycles at -40 °C. Notably, the fabricated all-hydrogel supercapacitor can endure dynamic deformations and operate well under 2000 tension cycles even at -40 °C, without experiencing delamination and electrochemical failure. This work offers a promising strategy for flexible energy storage devices with low-temperature adaptability.

12.
J Affect Disord ; 351: 738-745, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163566

RESUMO

BACKGROUND: Several studies have suggested an association between major depressive disorder (MDD) and abnormal brain structure. However, it is unclear whether MDD affects cortical gray matter volume, a common indicator of cognitive function. We aimed to determine whether MDD was associated with decreased cortical gray matter volume (GMV) through a Mendelian randomization (MR) study. METHODS: We obtained summary genetic data from a study conducted by the Psychiatric Genomics Consortium, which recruited a total of 480,359 participants (135,458 cases and 344,901 controls). Genetic tools-single nucleotide polymorphisms (SNPs)-of MDD were extracted from the study and their effects on gray matter volumes of the cortex and total brain were evaluated in a large cohort from the UK Biobank (n = 8427). The effects of the SNPs were pooled using inverse variance weighted (IVW) analysis and further tested in several sensitivity analyses. We tested whether C-reactive protein (CRP) levels and interleukin-6 signaling were the mediators of the effects using a multivariate MR model. RESULTS: Thirty-three SNPs were identified and adopted as genetic tools for predicting MDD. IVW analysis showed that MDD was associated with lower overall GMV (beta value -0.106, 95%CI -0.188 to -0.023, p = 0.011) in the frontal pole (left frontal pole, -0.152, 95%CI -0.177 to -0.127, p = 0.013; right frontal pole, -0.133, 95%CI -0.253 to -0.013, p = 0.028). Multivariate and mediation analysis showed that interleukin-6 was an important mediator of GMV reduction. Reverse causality analysis found no evidence that total GMV affected the risk of MDD, but showed that increased left precuneus cortex volume and left posterior cingulate cortex volume were associated with increased risk of MDD. LIMITATIONS: Potential pleiotropic effects and overestimation of real-world effects. Key assumptions for MR analysis may not be satisfactorily met. CONCLUSION: MDD was associated with a reduced GMV, and interleukin-6 might be a mediator of GMV reduction.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Substância Cinzenta , Análise de Mediação , Análise da Randomização Mendeliana , Interleucina-6/genética , Interleucina-6/metabolismo , Imageamento por Ressonância Magnética
13.
Compr Rev Food Sci Food Saf ; 23(1): e13259, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284614

RESUMO

Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.


Assuntos
Antocianinas , Poluentes Ambientais , Antocianinas/farmacologia , Dieta , Inocuidade dos Alimentos , Frutas
14.
Cell Signal ; 114: 110986, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38007189

RESUMO

Low back pain (LBP) is a pervasive global health issue. Roughly 40% of LBP cases are attributed to intervertebral disc degeneration (IVDD). While the underlying mechanisms of IVDD remain incompletely understood, it has been confirmed that apoptosis and extracellular matrix (ECM) degradation caused by many factors such as inflammation, oxidative stress, calcium (Ca2+) homeostasis imbalance leads to IVDD. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are involved in these processes. The initiation of ER stress precipitates cell apoptosis, and is also related to inflammation, levels of oxidative stress, and Ca2+ homeostasis. Additionally, mitochondrial dynamics, antioxidative systems, disruption of Ca2+ homeostasis are closely associated with Reactive Oxygen Species (ROS) and inflammation, promoting cell apoptosis. However, numerous crosstalk exists between the ER and mitochondria, where they interact through inflammatory cytokines, signaling pathways, ROS, or key molecules such as CHOP, forming positive and negative feedback loops. Furthermore, the contact sites between the ER and mitochondria, known as mitochondria-associated membranes (MAM), facilitate direct signal transduction such as Ca2+ transfer. However, the current attention towards this issue is insufficient. Therefore, this review summarizes the impacts of ER stress and mitochondrial dysfunction on IVDD, along with the possibly potential crosstalk between them, aiming to unveil novel avenues for IVDD intervention.


Assuntos
Degeneração do Disco Intervertebral , Doenças Mitocondriais , Humanos , Degeneração do Disco Intervertebral/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/fisiologia , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Inflamação
15.
Artigo em Inglês | MEDLINE | ID: mdl-38133815

RESUMO

Abundant studies have explored the relations among deviant peer affiliation, self-control, and aggression without separating within-person from between-person effects. Moreover, it is unclear whether self-control mediates the associations between deviant peer affiliation and aggression during early adolescence. This longitudinal study used Random Intercept Cross-Lagged Panel Model to examine the dynamic relations among deviant peer affiliation, self-control, and aggression within individuals, including examining whether self-control mediated the relations between deviant peer affiliation and aggression. A total of 4078 early adolescents (54% boys, Mage = 9.91, SD = 0.73) completed questionnaires on four occasions across 2 years. Results indicated: (a) Deviant peer affiliation and aggression positively predicted each other; (b) Self-control and aggression negatively predicted each other but were unstable; (c) Deviant peer affiliation and self-control negatively predicted each other; and (d) Self-control mediated the path from aggression to deviant peer affiliation, but not vice versa. The results more precisely identify the relations among deviant peer affiliation, self-control, and aggression within individuals, providing valuable information for prevention and intervention programs targeted at alleviating early adolescent aggression.

16.
J Neuroinflammation ; 20(1): 261, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953259

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) causes significant long-term neurocognitive dysfunction, which is associated with hippocampal neuroinflammation. Growing evidences have shown that astrocytes played a significant role in mediating neuroinflammation. Recently, in vivo reprogramming of astrocytes to neurons by NeuroD1 or PTBP1 administration has generated a lot of interests and controversies. While the debates centered on the source of neurogenesis, no attention has been paid to the changes of the astrocytes-mediated neuroinflammation and its impact on endogenous neurogenesis after NeuroD1 administration. METHODS: 80 adult male C57BL/6 mice were used in this study. SAH was established by pre-chiasmatic injection of 100 µl blood. AAV-NeuroD1-GFP virus was injected to the hippocampus 3 day post-SAH. Neurocognitive function, brain water content, in vivo electrophysiology, Golgi staining, western blot and immunofluorescent staining were assessed at day 14 post-virus injection. RESULTS: NeuroD1 administration markedly attenuated reactive astrocytes-mediated neuroinflammation by reversing neurotoxic A1 astrocytes transformation, decreasing the secretion of neuroinflammatory cytokines, and reducing the activation of harmful microglia. NeuroD1 treatment significantly reversed the brain-blood barrier impairment and promoted the release of neurotrophic factors pleiotrophin (PTN), all of which contributed to the improvement of cellular microenvironment and made it more suitable for neurogenesis. Interestingly, besides neurogenesis in the hippocampus from cells transfected with NeuroD1 at the early phase of SAH, NeuroD1 administration significantly boosted the endogenous neurogenesis at the late phase of SAH, which likely benefited from the improvement of the neuroinflammatory microenvironment. Functionally, NeuroD1 treatment significantly alleviated neurocognitive dysfunction impaired by SAH. CONCLUSIONS: NeuroD1 significantly promoted neurofunctional recovery by attenuating reactive astrocytes-mediated neuroinflammation and boosting neurogenesis decimated by SAH. Specifically, NeuroD1 efficiently converted transfected cells, most likely astrocytes, to neurons at the early phase of SAH, suppressed astrocytes-mediated neuroinflammation and boosted endogenous neurogenesis at the late phase of SAH.


Assuntos
Doenças Neuroinflamatórias , Hemorragia Subaracnóidea , Camundongos , Animais , Masculino , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Camundongos Endogâmicos C57BL , Encéfalo , Neurogênese/fisiologia
17.
Nanomicro Lett ; 16(1): 22, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982913

RESUMO

Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety, mechanical and thermal stability and easy-to-direct stacking. Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness, high conductivity and intrinsic flexibility. However, the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors. Here, we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance. The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode. Meanwhile, the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures. More significantly, the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance, delivering high-energy density of 39 Wh kg-1 at -60 °C with capacity retention of 98.7% over 10,000 cycles. With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte, the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at -60 °C. This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors.

18.
Int Immunopharmacol ; 124(Pt B): 111064, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857122

RESUMO

BACKGROUND: Although the incidence of non-tuberculous mycobacterial pulmonary disease (NTM-PD) is increasing annually, it is easily misdiagnosed as pulmonary tuberculosis (PTB). This study aimed to screen and identify the immunological and radiological characteristics that differentiate NTM-PD from PTB and to construct a discriminatory diagnostic model for NTM-PD, providing new tools for its differential diagnosis. METHODS: Hospitalised patients diagnosed with NTM-PD or PTB between January 2019 and June 2023 were included in the study. Immunological and radiological characteristics were compared between the two groups. Based on the selected differential features, a logistic regression algorithm was used to construct a discriminatory diagnostic model for NTM-PD, and its diagnostic performance was preliminarily analysed. RESULTS: Patients with NTM-PD were significantly older than those with PTB and the tuberculosis-specific interferon-gamma release assay (TB-IGRA) positivity rate was significantly lower in the NTM-PD group. Moreover, the absolute counts of total T lymphocytes, CD4+ T lymphocytes, CD8+ T lymphocytes, NK cells, and B lymphocytes were significantly lower in patients with NTM-PD and PTB than in healthy controls. Additionally, patients with NTM-PD had a significantly lower absolute count of B lymphocytes than the PTB group. Radiological analysis revealed significant differences between patients with NTM-PD and PTB in terms of cavity wall thickness, bronchial dilation, lung consolidation, pulmonary nodule size, pulmonary emphysema, lung bullae, lymph node calcification, pleural effusion, mediastinal and hilar lymphadenopathy, and the tree-in-bud sign. Bronchial dilation was identified as the predominant risk factor of NTM-PD, whereas TB-IGRA positivity, lymph node calcification, pleural effusion, and mediastinal and hilar lymphadenopathies were protective factors. Based on this, we constructed a discriminatory diagnostic model for NTM-PD. Its receiver operating characteristic curve demonstrated good diagnostic performance, with an area under the curve of 0.938. At the maximum Youden index of 0.746, the sensitivity and specificity were 0.835 and 0.911, respectively. CONCLUSIONS: Patients with NTM-PD and PTB exhibited impaired humoral and cellular immune functions as well as significant differences in radiological features. The constructed NTM-PD diagnostic model demonstrated good diagnostic performance. This study provides a new tool for the differential diagnosis of NTM-PD.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Derrame Pleural , Tuberculose Pulmonar , Tuberculose , Humanos , Estudos de Casos e Controles , Diagnóstico Diferencial , Tuberculose Pulmonar/diagnóstico por imagem , Infecções por Mycobacterium não Tuberculosas/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Micobactérias não Tuberculosas , Estudos Retrospectivos
19.
Toxicol Sci ; 197(1): 69-78, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37788138

RESUMO

Lapatinib, an oral tyrosine kinase inhibitor used as a first-line treatment for HER2-positive breast cancer, has been reported to be associated with hepatotoxicity; however, the underlying mechanisms remain unclear. In this study, we report that lapatinib causes cytotoxicity in multiple types of hepatic cells, including primary human hepatocytes, HepaRG cells, and HepG2 cells. A 24-h treatment with lapatinib induced cell cycle disturbances, apoptosis, and DNA damage, and decreased the protein levels of topoisomerase in HepG2 cells. We investigated the role of cytochrome P450 (CYP)-mediated metabolism in lapatinib-induced cytotoxicity using our previously established HepG2 cell lines, which express each of 14 CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7). We demonstrate that lapatinib is metabolized by CYP1A1, 3A4, 3A5, and 3A7. Among these, lapatinib-induced cytotoxicity and DNA damage were attenuated in cells overexpressing CYP3A5 or 3A7. Additionally, we measured the production of three primary metabolites of lapatinib (O-dealkylated lapatinib, N-dealkylated lapatinib, and N-hydroxy lapatinib) in CYP1A1-, 3A4-, 3A5-, and 3A7-overexpressing HepG2 cells. We compared the cytotoxicity of lapatinib and its 3 metabolites in primary human hepatocytes, HepaRG cells, and HepG2 cells and demonstrated that N-dealkylated lapatinib is more toxic than the parent drug and the other metabolites. Taken together, our results indicate that lapatinib-induced cytotoxicity involves multiple mechanisms, such as apoptosis and DNA damage; that N-dealkylated lapatinib is a toxic metabolite contributing to the toxic effect of lapatinib; and that CYP3A5- and 3A7-mediated metabolism plays a role in attenuating the cytotoxicity of lapatinib.


Assuntos
Citocromo P-450 CYP1A1 , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Lapatinib/toxicidade , Lapatinib/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo
20.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843276

RESUMO

The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Espectrina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Fatores de Transcrição/metabolismo , Carcinogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA